Reconstructing neural circuits using transplanted neural stem cells in the injured spinal cord.
نویسنده
چکیده
Traumatic spinal cord injury is one of the most common causes of disability in young adults. Restoring independent ambulation in such patients is considered one of the biggest challenges in regenerative medicine because repair of spinal cord injury involves the complex processes of axonal regeneration, remyelination, and formation of new synaptic connections. In this issue of the JCI, Abematsu et al. report their attempts to rise to this challenge, showing in a mouse model of severe spinal cord injury that spinal neuronal circuits can be restored by neural stem cell transplantation, leading to impressive functional recovery in the hind limbs.
منابع مشابه
Neurons derived from transplanted neural stem cells restore disrupted neuronal circuits in the injured mouse spinal cord
متن کامل
O27: The Role of Hydrogels and Cell Based Therapies in Regeneration of Spinal Cord Injury
Spinal cord injury (SCI) is one of the devastating conditions leading to functional and neurological deficits following road traffic accidents. To date, there is no definite treatment for repairing damaged spinal cord tissue. In this regard, cell therapy opens a new window in front of scientists by using different cells such as mesenchymal stem cells, olfactory ensheathing cells, Schwann cells,...
متن کاملRepair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملNeurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury.
The body's capacity to restore damaged neural networks in the injured CNS is severely limited. Although various treatment regimens can partially alleviate spinal cord injury (SCI), the mechanisms responsible for symptomatic improvement remain elusive. Here, using a mouse model of SCI, we have shown that transplantation of neural stem cells (NSCs) together with administration of valproic acid (V...
متن کاملTransplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord.
Transplanted neural stem/precursor cells possess peculiar therapeutic plasticity and can simultaneously instruct several therapeutic mechanisms in addition to cell replacement. Here, we interrogated the therapeutic plasticity of neural stem/precursor cells after their focal implantation in the severely contused spinal cord. We injected syngeneic neural stem/precursor cells at the proximal and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 120 9 شماره
صفحات -
تاریخ انتشار 2010